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ABSTRACT 

An industrial district with chemical plants producing inside poses 
a great threat to the surrounding atmospheric environment and 
human health. Therefore, designing a proper and available air 
quality monitoring network (AQMN) is essential for assessing the 
effectiveness of deployed pollution controlling strategies and 
facilities in dealing with reducing pollutants in the planning stage 
of emergency management. Whereas monitoring facilities located 
at inappropriate sites would affect data validity. Thus, in this 
paper, a geospatial technique-Bayesian Maximum Entropy (BME) 
in conjunction with a multi-objective optimization model was 
utilized to optimize the design of an AQMN of gas sensors. Our 
developed atmospheric dispersion simulation system was em-
ployed to generate ‘real’ historical data for the above method and 
an experiment was implemented to illustrate the feasibility of the 
proposed approach. This work is expected to facilitate a decision-
making process for determining an appropriate AQMN and assist 
the management work of environmental protection authorities. 
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1  INTRODUCTION 

Controlling gaseous pollutants is substantial and urgent in the 

situation of today’s atmospheric environment. Chemical industri-
al activities are an important factor leading to the deterioration of 
the atmospheric environment, and especially in developing coun-
tries (e.g. China and India), this is the case. Unfortunately, the 
byproducts produced during the production processes are nox-
ious, even sometimes highly toxic, and often they are discharged 
to the nearby atmospheric environment without purification 
treatment. As a result, the atmospheric quality in these countries 
is extremely poor [13], leading to substantial health problems for 
the residents [10] and to the destruction of the ecosystem. 

Faced with these problems, governments in developing coun-
tries have introduced a series of measures to abate atmospheric 
pollution [7; 8]. These measures include promulgation of stand-
ards, norms and emergency plans for environmental quality as 
well as air quality monitoring and control [31]. One of the most 
substantial tasks is the creation of an Air Quality Monitoring 
Networks (i.e. AQMN), constituted of measurement devices, to 
detect and monitor the disposed atmospheric pollutants in the 
chemical cluster for environmental protection authorities. Estab-
lishing such a proper AQMN to evaluate the spatiotemporal dis-
tribution of gaseous pollutants and the effectiveness of pollution 
controlling strategies is essential to ensure the health of the sur-
rounding residents and the sustainability of ecosystem. Objectives 
and necessities of such monitoring networks are reported fre-
quently in the literature [9; 18; 24; 25; 29] and can be summarized 
as follows: (i) Objectives related to air pollution legislation; long 
term land use planning and the announcement of emergency 
situations; (ii) The evaluation of exposure of population and other 
potential receptors; (iii) The controlling of emissions from signifi-
cantly important sources (e.g. thermal power plant); (iv) Analysis 
of air pollution data to conclude emission trends in air pollution 
or for further research. 

Moreover, the minimization of network cost covered by these 
objectives has been frequently reinterpreted as a constraint on 
the available budget [23; 31]. Previous methods in the literature 
fail to accomplish the task of designing a network capable of ful-
filling all of the objectives above. Most of the reported methods 
applied to specific situations wherein one or two of the previous 
objectives are considered [22]. 

Generally, existing methods of establishing an AQMN typical-
ly account for parameters related to ambient concentrations of 
gaseous pollutants of interest such as atmospheric transport and 
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dispersion, diffusion source characteristics, secondary reactions, 
deposition characteristics and local topography [2]. The objective 
of these network design methods is usually aiming at identifying 
the sites of maximum contaminant concentration, maximum 
contaminant dosage and maximum population protection as well 
as covering the maximum urban areas with the minimum number 
of monitoring stations [9; 12; 14; 17; 20; 21; 30]. 

Among the previous works on AQMN design, Goldstein [11] 
designed an AQMN in the greater London area based on the 
concept of a spatial correlation analysis. A statistical measure of 
information content was used to evaluate the availability of a 
particular AQMN in Canada [26]. Moreover, interpolation 
techniques were taken in Netherlands when assessing the errors 
in the spatial analysis [32]. Afterwards, air quality simulation 
models and population exposure information was applied to 
generate representative combined patterns; and then McElroy et 
al. applied the concepts of ‘sphere of influence’ (SOI) and ‘figure 
of merit’ (FOM) to determine the minimum numbers of 
monitoring stations required [19]. A methodology which involves 
the multiple-criteria method, spatial correlation technique in 
conjunction with fuzzy analytic hierarchy process was also used 
to determine the optimum number of ambient air quality stations 
[23]. It can be concluded from these studies that almost all these 
methods focus on optimizing the number and layout of fixed 
monitoring stations for urban areas. However, the ambient air 
quality monitoring problem in our work is totally different from 
the domains of research mentioned above. 

Our research goal is to design an appropriate AQMN to 
evaluate the spatial and temporal distribution of pollutants and 
the effectiveness of pollution control strategies for the chemical 
cluster incorporating fixed air quality monitoring stations with 
hazardous gas sensors. In the initial construction of a chemical 
cluster, a few fixed monitoring stations would generally be 
arranged based on economic, social and meteorological factors 
[16]. However, the price of fixed monitoring station is too high 
(i.e. up to a million); therefore a few fixed monitoring stations 
cannot effectively cover the entire industrial district. Extremely, 
the key areas are likely to not be covered by these monitoring 
stations while a leakage incident occurs. Thus the unavailability 
and irrationality of initial construction of an AQMN in the 
chemical cluster is an essential factor of ineffective supervision, 
which may lead to the occurrence of emergent accidents. In light 
of that, the proposed method in this paper designs a monitoring 
network of gas sensors through analyzing historical monitoring 
data based on existing fixed monitoring stations. 

In this article, a Geographic Information System-based (GIS-
based) method is introduced to design a comprehensive AQMN 
wherein both high-accuracy air quality monitoring stations and 
gas sensors are modeled. First, study area and some additional 
information are introduced. Then, Bayesian Maximum Entropy 
(BME) is applied to generate concentration distribution of 
gaseous pollutants based on historical monitoring data from gas 
sensors. Finally, a multi-objective optimization model is built on 
account of the concentration distribution aiming at optimizing 
the monitoring network of gas sensors. The proposed approach, 
which involves two kinds of inspection resources, is a supplement 
of existing monitoring approaches, and greatly improves the 
validity of monitoring data. 

2  Methods 

In this section, a geospatial technique based on the BME method 
is presented to acquire the spatiotemporal distribution of 
concentration of gaseous pollutants in a chemical cluster by 
importing multi-year monitoring data from multi-monitoring 
spots. With the spatiotemporal distribution of airborne 
contaminants, the optimal layout of gas sensors can be 
determined based on the optimization target of maximum 
contaminant concentration or maximum contaminant dosage. 
Together with the fixed monitoring stations, a comprehensive 
monitoring network is built up to achieve valid monitoring of 
gaseous pollutants in a chemical cluster. Moreover, decision-
makers can utilize the spatiotemporal information of monitoring 
measurements provided by the AQMN to develop planning and 
mitigation strategies.  

2.1  Study area 

Basically, a chemical industrial park or a chemical cluster is 
composed of numerous chemical companies, an inspection 
agency and functional departments (e.g. hospitals, hotels, police 
offices and etc.). Moreover, a chemical company may possess 
several chemical plants in the chemical industrial park. Our study 
area is not an exception. Figure 1 shows a refinery GIS map of a 
chemical cluster in Shanghai, China which is also the study area 
used in our research. Through investigating the emission of SO2 
and referring to the main byproducts information of chemical 
plants, five possible SO2 emission sources are located in this area. 
On the map, the 19 small circles are the complete set of discharge 
points for all contaminants, among which the five blue circles are 
the SO2 discharge spots. After projecting the WGS84 geographic 
coordinates into UTM Cartesian coordinates, the resulting 
locations of all the candidate sources are listed in Table 1 with 
concrete information. Moreover, the triangles indicate the fixed 
high-accuracy air quality monitoring stations which cannot 
support the ability to monitor the whole chemical cluster; the 
area marked by the black quadrilateral box is main working area 
of the site while the area below the working region is the sea. 
Meanwhile, a practicality picture of the two inspection resources 
is shown in Figure 2. These inspection resources (i.e. five 
monitoring stations and gas sensors) are operating to inspect 55 
chemical plants with 243 releasing spots. In contrast, the 
measurement accuracy of high-accuracy air quality monitoring 
stations is a thousand times more accurate compared to that of 
gas sensors. Moreover, the measurements of gas sensors should 
be considered as hard data when utilized in BME method. The 
monitoring data in the past year of the five fixed monitoring 
stations are used as imports in source estimation methods to 
determine the actual frequent emission sources of SO2. Through 
calculation and our investigation, the chimney of the sulfuric acid 
recovery (SAR) system and Waste incinerator for acrylonitrile 
(AR) were the major locations contributing to the emission of SO2. 
Then, the source term as well as historical meteorological data is 
imported into an atmospheric dispersion simulation tool to 
generate ‘real’ historical concentration data of SO2 in the area of 
Shanghai chemical cluster.  KD-ADSS developed by National 
University of Defense Technology is used as simulation tool in 
this study. Besides, KD-ADSS is a Gaussian-model based 
simulation system which has been validated by the commercial 
software PHAST, the Indianapolis field study and a study of the 
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Fukushima Dai-ichi nuclear accident. The detailed setup of study 
area will be presented in subsection 4.2-experimental settings. 

 

Figure 1: Refinery GIS-Map of study area. 

 

Figure 2: Inspection resources of inspection agency ((a) is 
the gas sensors and (b) is one of the high-accuracy air 
quality monitoring stations). 

Table 1: Cartesian coordinates of SO2 emission points and 
additional information. 

No. X Y Height Contaminants 

1 -132.575 -1317.63 50 SO2, NOx, VOC, NH3 

2 -302.901 -1483.42 68 SO2, NOx, vitriol fog 

3 267.1415 0.359916 27 SO2, PM2.5/PM10 

4 861.3643 147.0462 27 SO2, PM2.5/PM10 

5 1532.017 -142.542 30 
CO, SO2, NOx, 
PM2.5/PM10, HF, HCl 

2.2  Bayesian maximum entropy 

In air quality studies, the concentration distribution of a 
particular pollutant – such as SO2 – is represented in form of a 
spatiotemporal random field (S/TRF) ( )X p  which assumes 
values at space/time points ( , )tp s , where s  is location vector 
while t denotes time [1]. Generally, environmental authorities are 
concerned with the estimation values of the pollutant S/TRF at 
unmeasured points with available dataset and physical 
knowledge. The estimation process leads to a spatiotemporal map 
which presents the concentration distribution of the pollutant in 
space and time. BME, a space-time data analysis method in a 
modern statistical framework introduced by Christakos [1; 5], 
provides an effective, efficient and accurate way for the 

estimation of concentration distribution. It is worth to note that 
BME has already been proved to perform better in spatiotemporal 
analysis compared to Kriging technique and interpolation 
approach [3]. 

The publicly available SEKS-GUI software library [33] is 
utilized in this paper to implement the space-time BME analysis. 
The software solves the fundamental BME equations of 
spatiotemporal dependence analysis and mapping as follows [15]: 
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where g  is a vector of ag -functions ( 1,2,...  ) and g denotes 
the statistical expectation,   is a vector of a -coefficients that 
depends on the space-time coordinates and is related to g (i.e., 
the a  indicates the relative significance of each ag -functions in 
the composite solution sought), the s  represents the site-specific 
knowledge bases available, A is a normalization parameter, and 

Kf  is the attribute probability density function (PDF) at each 
point. The parameters of g and s are inputs to the equation, 
whereas the unknowns are the  and Kf  across space and time. 

BME is practical because the fundamental equations make no 
restrictive assumptions about the underlying probability 
distributions (non-Gaussian laws are automatically incorporated) 
and the shape of the space-time predictor (non-linear predictors 
are allowed). Hence, the BME framework can handle with a 
broader scope of knowledge bases (KB) types and uncertain data 
[6]. 

General KB (G-KB) and site-specific KB (or S-KB) are 
integrated in the fundamental BME equations. Specifically, the G-
KB includes physical laws, theoretical models of space-time 
dependence (covariance, semivariogram, etc.), empirical relations, 
and logic-based assertions that are concerned with the pollution

( )X p . The S-KB usually consists of observed hard data and soft 
data (measurements with a significant amount of uncertainty). In 
our study, the G-KB contains theoretical covariance models while 
the S-KB includes airborne pollutant data. 

SEKS-GUI represents the prediction grid by the space-time 
vectors kp , in which case the fundamental BME equations 
compute the complete prediction PDF Kf  at each kp . After 
determining the objective of study and PDF Kf , predictions of 

( )X p  can be derived at each spatiotemporal node kp of mapping 
grid. 

The software thus generates informative airborne pollutant 
maps that completely cover the spatial and temporal continua 
within their respective extents, which enables establishment of 
optimization model in the next subsection. 

2.3  Multi-objective optimization model 
In this subsection, two single objectives are proposed to optimize 
the design of an AQMN of gas sensors based on the results of 
BME. In conjunction with the fixed monitoring stations, a 
comprehensive air quality monitoring network with the ability of 
global and valid monitoring in a chemical cluster is built up. 

2.3.1 Maximum concentration detection capability. Maximum 
concentration detection capability (CDC) is defined here as the 
maximum grids number captured by AQMN of gas sensors 
wherein the pollutant levels are mostly exceeding the threshold 
value of standard value or average value. The model, based on 
this objective, is established as follows: 
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Where the notation of id  is the variable indicating the number of 

grids where the pollutant level exceeding the threshold value of 
standard value is detected in the ith month; T is the total number 
of months in a year; jy  is a binary integer that indicates whether 

a gas sensor is placed in grid j; J denotes the total number of grids 
in study area; iM  is the set of grids in the ith month with a 
pollutant level greater than the threshold of standard value or 
average value; and Q is the upper limit of the number of gas 
sensors in an AQMN. 

2.3.2 Maximum dosage detection capability. Some areas may 
have a low incidence of high-level pollution but a large dosage 
due to long term exposure [16]. Therefore, using the previous 
mentioned the objective, CDC, alone when designing an AQMN 
may be inadequate. The objective and the model for maximum 
dosage detection capability (DDC) can be formulated as follows: 
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Where the notation of ijC  represents the pollutant level at gird j 
in the ith month. The first and second constraints indicate that the 
notation of N is the set of grids with an accumulated dosage 
pollutant level greater than the threshold of average value. 
Of these two objective models described above, the CDC and 
DDC can be applied independently or combined into a multi-
objective model. In this paper, the combination of the two 
objectives seems to have a little impact on the final result in our 
experiments. Therefore, we utilize the different single objective to 
design an AQMN of gas sensors respectively.  

3  Dataset 

The five fixed monitoring air quality stations in Shanghai 
chemical cluster were constructed according to the regional 
project for air quality conservation, established by empirical 
judgment and the governmental law [7]. After projecting the 
WGS84 geographic coordinates into UTM Cartesian coordinates, 
the resulting locations of these monitoring stations are listed in 
Table 2 with some additional information. 

These fixed monitoring stations contain high-accuracy 
reactors which are able to collect up to 118 categories of airborne 
contaminants (e.g. VOCs, NOx, SO2, PM10, PM2.5 and etc.). The 
measurement interval of gaseous pollutants lasts no longer than a 
few seconds, which can be considered as continuous collections. 

Therefore, these data is suitable for hourly average, daily average, 
monthly average and annually average analysis. The trend 
analysis is the focus of environmental protection authorities. The 
historical dataset used in this study consisted of up to 118 
categories of airborne pollutants and meteorological data for the 
period December 2015 – November 2016 at the five fixed 
monitoring stations in Shanghai chemical cluster. The total 
amount of the dataset is 20430248 entries while the available data 
contains 20290164 entries. The ineffective data is associated with 
sites where temporary failures, warm-up of devices or stations 
working on a non-systematic temporal basis existed. 

Table 2: Cartesian coordinates of fixed monitoring stations 
and additional information. 

No. X Y Explanation 
A -1022.9 223. North-West Station 
B -796.9 -431.5 Secco Station 
C 3575.3 3518.9 North-East Station 
D 1620.6 1293.3 Union Road Station 
E 4151.1 1292.3 Covestro Station 

Pollutant distribution in the atmosphere varies under different 
meteorological conditions. Wind speed and directions change 
remarkably in different months, imposing great uncertainty on 
the distribution of airborne contaminants. Figure 3 shows the 
annual wind-rose diagram for the study area. In detail, the figure 
fully illustrates that Shanghai is affected by the obvious monsoon. 
The southeast monsoon prevails at Shanghai in summer while the 
northwest monsoon prevails in winter. Generally, most 
concentration distribution of a specific gaseous pollutant is 
distributed in the downside direction of the wind. Therefore, it is 
possible for researchers to predict the approximate distribution of 
the gaseous pollutants in a chemical cluster through analyzing 
the regular variation of wind speed and wind direction. 

 

Figure 3: Annual wind-rose diagram for the research area. 

4  Experiments 

As the cooperation with Shanghai chemical cluster has just 
started up, it is impossible to collect long term monitoring data of 
gas sensors. Fortunately, measurement data in the past year of 
fixed monitoring stations in conjunction with historical 
meteorological data can be applied to estimate the parameters of 
diffusion source term (i.e. location and release rate) of a particular 
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gaseous pollutant through source estimation methods. Interested 
readers are referred to QIU and ZHU [27; 28], more technical and 
theoretical details were introduced. Then, the source term as well 
as historical meteorological data is imported to our developed 
atmospheric dispersion simulation software named as KD-ADSS. 
After simulation, the concentration distribution of a particular 
airborne contaminant in the past few years is served as ‘real’ 
historical concentration distribution data. Moreover, the 
concentration data is extracted at locations of gas sensors as the 
historical monitoring data. Finally, the ‘real’ historical monitoring 
data is imported to mixed integer linear program to generate 
optimal design of an AQMN. 

4.1  Experimental settings 

4.1.1 Setup of study area. Further, the study area of Shanghai 
chemical cluster can be simplified as a 2000 3000m m  rectangle 
on account of experimental conditions. The refinery is shown in 
Figure	 4. Specifically, the red circles represent the two main re-
lease spots calculated through source estimation method (1 de-
notes Waste incinerator for acrylonitrile (AR) and 2 denotes the 
chimney of the sulfuric acid recovery (SAR) system). The proper 
locations of these two releasing spots are (400,400) and (200,300) 
respectively. Moreover, the rectangle is divided into 150 quadrate 
grids wherein the size is 200 200m m . The initial layout of the 
gas sensors is designed as follows according to the wind field 
analysis. Besides, the maximum number of gas sensors in an 
AQMN is no more than 60. All of the gas sensors are positioned 
at the height of 20 meters in the center of each grid.  

 

Figure 4: Simplified study area for experiment. 

4.1.2 Setup of atmospheric dispersion simulation. To simulate a 
contaminant dispersion scenario, other than the information of 
emission source   and meteorological parameters (wind 

direction d  and wind speed v ), the environmental parameters 
(e.g. atmospheric stability and terrain type) must also be 
considered. For the Gaussian diffusion coefficients y  and z , 

they can be expressed as [4]: 
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where xD  denotes the downwind distance of the interest point. 
The parameters , , , , ,z z z z z za b c a b c  depend on the environmental 
conditions (i.e. atmospheric stability and terrain type). According 
to the terrain type of Shanghai chemical cluster (i.e. urban) and 
atmospheric stability in Shanghai (i.e. C), the parameters 

, , , , ,z z z z z za b c a b c  is determined at value of (0.16, 0.0004, -0.5, 0.08, 
0.0015, -0.5). 

Through analyzing the daily concentration data collected by 
fixed monitoring stations, the daily hour-average concentration 
trend is discovered. In Figure 5, the X-axis is the time series of 
one day while the Y-axis represents the main atmospheric 
contaminants monitored by monitoring stations. The background 
color of this figure is white, which means concentration value of 
atmospheric pollutants is zero. Furthermore, a darker area 
represents higher gas concentration in this figure. It can be 
concluded from the color-bar that black is darker than grey and 
white means that the concentration of the former is greater than 
that of the latter. From the figure, it is obvious that discharging 
behavior of chemical plants clearly has temporal characteristics. 
The discharging amount of atmospheric pollutants in the time 
unit of 12-24 hours is far greater than that in the time unit of 1-12 
hours. Therefore, the ‘real’ release rates q of the two release spots 
vary from 0 to 5 1g s . Moreover, the release rate during the 
period of 12-24 hours is set twice of that during the period of 0-12 
hours in simulation. Besides, through analyzing the monthly-
average concentration data of SO2, it is concluded in Figure 6 that 
the discharging amount of SO2 during the period from Feburary to 
July is greater than that during the period from Augest to January. 
Thus, the release rate in summer is set greater than that in winter. 

Then, all the input parameters and data including emission 
source, historical meteorological data, environmental parameters 
and Gaussian diffusion coefficients are imported to conduct daily 
dispersion for a decade in KD-ADSS. Further, the generated ‘real’ 
historical dataset is utilized to produce monthly-averaged SO2 
measurements from a total of 60 monitoring locations of gas 
sensors. Finally, these monthly-averaged measurements as well as 
geospatial data would be imported to SEKS-GUI library. 

 

Figure 5: Daily hour-average concentration trend during 
the past year. 
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Figure 6: Monthly-average concentration trend of SO2. 

4.1.3 Setup of SEKS-GUI software library. SEKS-GUI 
implements the BME methodology for spatiotemporal analysis. 
The following paragraph is the workflow of how this analysis 
works in SEKS-GUI.  

Firstly, the hard data information with exact measurements, 
the soft data with certain uncertainty and output GIS grid are 
imported to SEKS-GUI. Then, the data is detrended and brought 
from raw input information into suitable processing form. For the 
detrending, Gaussian kernel smoothing is applied across the 
dataset. Moreover, a data transformation aiming at reshaping the 
detrended data set from the original space of values (original-
space) into a space where their distribution resembles a Gaussian 
one (transformation-space) is implemented. Besides, a covariance 
analysis is conducted to investigate correlation patterns among 
the data in the next stage. Finally, we have to select and initialize 
the type of BME prediction. Different options are ranked with 
respect to the time and complicity required for the computations, 
starting with the fastest and simplest one and ending with the 
most time-consuming and complicated. In visualization, SEKS-
GUI offers a bundle of mapping options to display the BME 
prediction results once the BME output MAT-file is loaded.  

4.2  Results and discussions 

4.2.1 Results of dispersion simulation. To acquire the ‘real’ 
mean concentration distribution of SO2 during the past ten years, 
about 86,400 dispersion scenarios (i.e. 
24( ) 30( ) 12( ) 10( )hour day month year    ) based on historical 

meteorological data were run through our developed KD-ADSS. 
Figure	7 indicates the simulated concentration distribution of SO2 

in January, June, July and December of 2016. To better exhibiting 
the dispersion effect, the concentration data in Figure	 7 was 
logarithmically processed and sophisticatedly interpolated. From 
the figure, it is concluded that north-west part and south-east 
part of study area were seriously affected by the gaseous 
pollutant of SO2 due to the influence of monsoon. After obtaining 
the ‘real’ dispersion data, concentration data at the monitoring 
spots of gas sensors are extracted from the dataset. The amount 
of the ‘real’ monitoring data in SEKS-GUI is 7200 entries (i.e. 
60( ) 12( ) 10( )sites month year   ).  

 

Figure 7: Mean Concentration distribution of SO2 in 2016 
generated by KD-ADSS ((a) denotes distribution in January; 

(b) denotes distribution in June; (c) denotes distribution in 
July; (d) denotes distribution in December). 

4.2.2 Results of BME analysis. After a 10-year dataset of ‘real’ 
monitoring concentration as well as geospatial information of 
prediction grid is loaded, the detrending stage, transformation 
stage and covariance analysis stage were then conducted. After 
that, BME prediction and visualization of the results are shown in 
Figure	8. The figure illustrates the averaged concentration distri-
bution trend in each month during the past ten years. It is worth 
noting that the concentration data utilized in this figure is the 
predicted raw data without interpolation and log-likelihood. Ob-
viously, the north-west part of study area was severely affected in 
summer time because of the south-east monsoon while the south-
east part of study area was severely influenced in winter time due 
to the north-west monsoon. Moreover, the concrete concentra-
tion data and geospatial data of this figure are exported to the 
following research of designing a valid AQMN.  

 

Figure 8: Mean Concentration distribution of SO2 during 
the past ten years by SEKS-GUI (from left to right, top to 
bottom, the sub-figure denotes January to December in 
turn). 

4.2.3 Results of multi-objective optimization model. With 
respect to the first objective-maximum concentration detection 
capability, the essence of the corresponding mixed integer linear 
program (MILP) is to detect the most frequent grids wherein high 
concentration value excessing the standard value or the average 
value often occurs. After importing the dataset acquired from the 
BME result to the corresponding MILP, the optimal design of an 
AQMN on account of maximum concentration detection 
capability is exhibited in Figure	9. Compared to the initial layout 
of gas sensor AQMN, several monitoring spots which initially are 
positioned at the north-east part are removed. Moreover, all of 
the gas sensors are located in the north-west and south-east 
direction of the release spot of SO2.  
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Figure 9: Optimal design of an AQMN on account of 
maximum concentration detection capability. 

Considering the second objective-maximum dosage detection 
capability, the optimal design of an AQMN is exhibited in Figure 
10. Compared to the result of CDC, the structure of the AQMN 
has barely changed. The grids wherein long term exposure occurs 
are also located in the north-west and south-east part of the 
chemical cluster. Slight variations appearing near the release 
sources may result from the height of monitoring spots. 

 

Figure 10: Optimal design of an AQMN on account of 
maximum dosage detection capability. 

It must be some concerns about the extreme circumstances 
that the dispersion of gaseous pollutants may spread to the north-
east part of the study area without detection. This is the case, but 
there are also three high-accuracy air quality monitoring stations 
fixed in the north-east part of the study area. Therefore, the 
comprehensive AQMN constituted of gas sensors and monitoring 
stations is valid and available.  

5  CONCLUSIONS 

This paper applies a geospatial technique-BME in conjunction 
with a multi-objective optimization model to optimize the design 
of an AQMN of gas sensors. To deal with the problem of lacking 
long-term historical monitoring data, our developed atmospheric 
dispersion simulation system is employed to generate ‘real’ 
historical data based on the results of source estimation and wind 
analysis. Then, an experiment is implemented to illustrate the 
feasibility of the proposed approach. Results show that BME 

prediction of mean concentration distribution not only reveals 
the distribution regularity of gaseous pollutants, but also provides 
essential data for designing an AQMN. This work has been 
proved to have the ability to facilitate a decision-making process 
for determining an appropriate AQMN and assist the 
management work of environmental protection authorities.  
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