
Finding Spatiotemporal Co-occurrence Patterns of
Heterogeneous Events for Prediction

Hung Tran-The
National Institute of Information and Communications

Technology
4-2-1 Nukui-Kitamachi
Koganei, Tokyo 184-8795
hung.tranthe@nict.go.jp

Koji Zettsu
National Institute of Information and Communications

Technology
4-2-1 Nukui-Kitamachi
Koganei, Tokyo 184-8795

zettsu@nict.go.jp

ABSTRACT
Advances of IoT facilitates leverage of heterogeneous sensing data
over the Internet, such as remote sensing data, traffic data and
SNS data. Integrated analysis of IoT data is crucial part for urban
emergency management in smart cities in order to predict various
social events co-occurringwith a natural disaster event. Discovering
of spatiotemporal co-occurrence patterns is a task of integrated
analysis of IoT data and has received a lot of attention. However,
such spatiotemporal co-occurrence patterns can fail to capture local
events that occur in limited regions and limited time intervals.

In this paper, we consider the problem of mining spatiotemporal
co-occurrence patterns from IoT sensing data, each of which is
annotated with a valid spatial and temporal region. Our idea is to
incorporate spatiotemporal clustering with the frequent itemset
(pattern) discovery process to reduce spatiotemporal bias of event
distributions and we repeat this process in greedy approach in
order to capture patterns with difference scales. By this way, our
algorithm improves accuracy of the frequent itemsets. We applied
our method to discovery and prediction of traffic disaster events
co-occurring with torrential rain events in Kansai area, Japan. Our
experimental result shows 31% improvement of prediction perfor-
mance on F-measure against a baseline.

CCS CONCEPTS
• Data Mining → Spatial Databases and GIS;
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1 INTRODUCTION
Advances of IoT facilitates leverage of heterogeneous sensing data
over the Internet, such as remote sensing data, traffic data and SNS
data. Integrated analysis of IoT data is crucial part for urban disaster
management in smart cities in order to predict various social events
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co-occurring with a natural disaster event. Disasters of localized
torrential rains (see Figure 1) like traffic hazards have increased
dramatically and become a serious issue due to recent weather
situation. Discovering of spatiotemporal co-occurrence patterns is
a task of integrated analysis of IoT data and has received a lot of
attention. One of the special challenges for spatiotemporal patterns
mining is that information are usually not uniformly distributed in
spatiotemporal datasets. Therefore, it is not surprising that domain
experts are most interested in discovering hidden patterns at a
regional scale rather than a global scale [8] or at a temporal scale
rather than a global time interval [4]. However, in our knowledge,
no works was interested in mining co-occurrence patterns in the
both limited spatial and temporal regions in particular in emergency
management. When considering the relationship between rainfall
amount, congestion speed and congestion length on roads at Kansai
area, Japan, we observed three patterns as follows:

Figure 1: Localized torrential rains happened in Kansai area
in 13/08/2015 at 13h

(1) there is high probability of the occurrence of congestion
speed [10 − 20km/h] and congestion length [30 − 600m] in a
region if there is heavy rain with rainfall [20 − 30mm/h] in
the nearby region.

(2) there is high probability of the occurrence of congestion
speed [10 − 20km/h] and congestion length [> 600m] in
a region at Sanda city if there is heavy rain with rainfall
[30 − 50mm/h] in the nearby region.

(3) there is high probability of the occurrence of congestion
speed [< 10km/h] and congestion length [30 − 600m] at a
road segment only with rainfall [> 10mm/h] in the nearby
region.

https://doi.org/10.1145/3152465.3152475
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In this paper, we addressmining such spatiotemporal co-occurrence
patters and annotate a valid spatial and temporal region to each pat-
tern. Co-occurrence patters annotated a valid spatial and temporal
region are important especially for events having spatiotemporally
biased distribution like disaster events. This allows us to manage
better disasters as well as predict more exactly various social events
co-occurring with a natural disaster event.

Mining spatiotemporal co-occurrence patterns with different
spatiotemporal scales is challenging because we cannot know the
actual range of patterns. In our real example, there are patterns only
occurring at a road segment like pattern 3, or occurring in larger
range like pattern 2. To address these issue, we incorporate spa-
tiotemporal clustering with the frequent itemset discovery process.
Spatiotemporal clusters created from clustering potentially contain
co-occurrence patterns due to the spatial and temporal dependence
of events. The contributions of our work are as follows:

• Weprovide a formula definition of spatiotemporal co-occurrence
patterns with respect to a spatial and temporal region.

• We propose an efficient algorithm to find out spatiotemporal
co-occurrence patterns.

• We evaluate our method using a list of instances of feature
types created from two datasets. We applied our method
to discovery and prediction of traffic disaster events co-
occurring with torrential rain events in Kansai area, Japan.
Our experimental result shows 31% improvement of predic-
tion performance on F-measure against a baseline.

The rest of the paper is organized as follows: Section 1 gives a
background on relatedwork. Section 2 briefly introduces the general
approach ofmining spatiotemporal co-occurrence patterns and then
we give important definitions and problem statement in Section
3. We introduce our novel method for mining spatiotemporal co-
occurrence patterns in Section 4. Finally, we present a variety of
experiments demonstrating the effectiveness of our approach in
Section 5 and finally Section 6 summarizes the paper.

2 RELATEDWORKS
In this section, previous studies related to co-occurrence pattern
mining are overviewed.

2.1 Co-occurrence Pattern Mining
Spatiotemporal co-occurrence pattern mining is an important area
in spatiotemporal data mining. Many algorithms have been pro-
posed in literature for mining spatiotemporal co-occurrence pattern
in a form of an association rule. There are two approaches to solve
this problem, the distance-based approach and the transaction-
based approach.

The distance-based approach typically uses a parameter, called
the prevalence measure for emphasized how interesting the spa-
tiotemporal co-occurrences are. Many algorithms for this approach
can be found in [13], [18], [21] or [3]. For example, in [13], the
authors proposed a prevalence measure called the participation
index. In [18], the authors used spatiotemporal overlap relation
for mining spatiotemporal co-occurrence pattern in data sets with
evolving regions. The transaction-based approach focus on defining

transactions over space and time and then an association rule min-
ing like [1] can be used. To define transactions, a reference-feature
centric model [15] can be used.

An important branch of co-occurrence pattern mining is the re-
gional co-location patternmining [8],[10],[17]. Regional co-location
patterns represent subsets of feature types frequently located to-
gether in certain localities in a study area. These works are similar
to our problem. We will describe more these works in comparison
with our approach in section 3.

2.2 Spatiotemporal Clustering
Spatiotemporal clustering is used to discover localized events or
spatiotemporal hotspots. Spatiotemporal hotspots are a special kind
of clustered pattern whose inside has significantly higher intensity
than outside. Localized events within small geographic areas, such
as public event, based on clustering techniques are handled in [20].
A study in [19] proposed a system to identify bursty local by using
a spatiotemporal clustering technique. Concerning traffic conges-
tion, the spatiotemporal clustering from traffic data was used to
discover traffic congestion patterns in [22]. These studies refer to
co-occurrence of attributes in a spatiotemporal cluster but not refers
to frequency of co-occurrences that we call co-occurrence patterns.
There are several techniques for spatiotemporal clustering prob-
lem. Partition techniques (e.g K-means) use clustering similarity
measured regarding the mean value of the objects in a cluster [16].
Density-based techniques use a density threshold around each data
point to distinguish the interesting data points from the noise. DB-
SCAN [11] is a famous density based algorithm. It has the ability
in discovering clusters with arbitrary shape, it does not require the
number of clusters as a input parameter and specially it is scaled
for large datasets.

2.3 Other Related Studies
Local patterns are considered as regularities that hold for a par-
ticular part of the data [6]. A great interest of local patterns is to
capture subtle relationships in the data which are not detected by
global methods and leading to the discovery of precious nuggets
of knowledge [12]. In [5], the authors discovered local frequent
patterns with temporal intervals. This notation is closed to the
notion that we are considering however we refer to co-occurrence
patterns and a part of the data in our research is exactly a spa-
tiotemporal cluster that is measured by a density function. In [7],
the authors exploited spatio-temporal-theme correlation for pattern
interpretation from heterogeneous sensors. A other study in [23]
used multiple spatiotemporal datasets across different domains like
our paper detecting the collective anomalies instead of detecting
co-occurrence patterns.

3 DEFINITIONS AND PROBLEM STATEMENT
3.1 Our Approach
Most of regional co-location mining research (e.g [8],[10],[17]) only
focus on co-occurrence of events on spatial regions. Our research
consider co-occurrence of events in the both time and spatial re-
gions. It is the first difference of our research. In addition, in [17],
their algorithm use bottom-up approach and a neighborhood graph
based approach to discover all possible patterns. However, this may



EM-GIS’17, November 7–10, 2017, Redondo Beach, CA, USA

be expensive for big data. In [8] and [10], they used supervised clus-
tering to generate subregions and then mine co-location patterns in
generated subregions. A supervised clustering use multi-resolution
grids as in [8] requires a prior knowledge about data.

Our approach need not to use supervised clustering. We incor-
porate a density based clustering to reduce spatiotemporal bias
of distributed disaster events. In particular, mined patterns in our
method are in form of association rules that are relevant for pre-
diction and we used F-measure for evaluation of our prediction
results. In our knowledge, no research for mining spatiotemporal
co-occurrent patterns was interested in the prediction problem.
More precisely, in our approach, to discover co-occurrence pat-
terns, we follow a greedy approach with multiple iterations. In each
iteration, we use three phases:

(1) discover and identify spatiotemporal subregions by cluster-
ing spatiotemporally on a selected spatiotemporal region

(2) mine association rules for each subregion
(3) filter co-occurrence patterns basing on several conditions
In the first phase, we uses a density based spatiotemporal clus-

tering algorithm. In this phase, there are two challenge: how to
give a relevant density function and how to choose automatically
parameters of clustering for next iterations because densities of
new subregions become more denser over iterations. In the second
phase, for each new subregion, all frequent itemsets are generated.
In the third one, we filter patterns having so small scale and filter
all new co-occurrence patterns overlapping discovered patterns in
previous iterations.

We use iterations is to avoid global thresholds of association
rule mining algorithm. This permit us to capture patterns with
difference scales. To select a cluster for next iteration, we use a
measure of interestingness of a cluster that permit us to reduce
false negative rate of prediction. This will be discussed in Section 4.

3.2 Definitions
In this section, we formulate the problem of mining spatiotempo-
ral co-occurrence patterns annotated with a spatial and temporal
region. We introduce necessary definitions of size-k combination,
size-k spatiotemporal co-occurrence, pattern instances, spatiotem-
poral transactions. From spatiotemporal transactions, we define
an association rule annotated with a spatiotemporal cluster and
then define the concept of a spatiotemporal co-occurrence patterns
annotated with a spatiotemporal cluster in our research.

Let E = {e1, e2, ...eM } be a family of sets of spatiotemporal
features, where each feature ei is a set of Mi feature types, ei =
{ fi1, fi2, ... fiMi }, where ei ∩ ej = ∅ for any i, j. For example E =
{e1 = { f1, f2, f3}, e2 = { f4, f5}} is a family of sets. In the practice,
e1 may be the rainfall amount, f1 is rainfall amount [10− 13mm/h),
f2 is rainfall amount [13 − 15mm/h), f3 is rainfall amount [15 −
20mm/h), e2 may be the congestion length, f4 is congestion length
[300 − 600m), f5 is congestion length [600m, ).

Let I be the set of instances of feature types of all features over
space and time, I = {i1, i2, ...iN }. An instance is characterized
by a feature, a feature type, a start time and an end time of the
instance, and a geometry region where the instance happens. The
start time and the end time form a time interval of the instance. The
Table 1 shows an example of temporal information about several

Table 1: An example of temporal information about several
instances of data

Instance ID Feature Feature Type Start Time End Time
i1 e1 f1 09:00 09:05
i2 e1 f2 09:00 09:01
i3 e1 f3 09:00 09:01
i4 e2 f4 09:30 09:35
i5 e2 f5 09:33 09:34
i6 e1 f1 09:40 09:45
i7 e1 f1 09:40 09:43
i8 e1 f2 09:40 09:43
i9 e2 f4 09:44 09:45
i10 e2 f5 09:45 09:46

instances of data. In this example, there are two features, e1 and e2.
The feature e1 contains three feature types f1, f2, f3 and feature e2
contains two feature types f4, f5.

Definition 3.1 (size-k combination). A size-k combination is de-
noted as SE = {e1, e2, ...ek }, where SE ⊆ E, SE , ∅ and 1 ≤ k ≤ M .

Definition 3.2 (size-k spatiotemporal co-occurrence). Given a size-
k combination SE = {e1, e2, ...ek }, a size-k spatiotemporal co-
occurrence of SE is denoted as SF = { f1, f2, ... fk }, where fi ∈ ei
for any i , SF , ∅.

For example, if SE = {e1, e2} then { f1, f4}, { f2, f4} and { f1, f5}
are size-2 spatiotemporal co-occurrence of SE.

Spatiotemporal co-occurrences are defined for reflecting spa-
tiotemporal relationships among two or more instances both in
spatial and temporal dimensions. There are several methods to
estimate spatiotemporal relationships. For example, a temporal re-
lation such as after, during, and overlap in [2], or a spatial relation
like equal, overlap and contain as shown in [9]. In our research,
we employ overlap relation for the both spatial and temporal re-
lations. Let Vs (IF ) is the spatial intersection of geometry regions
of all instances in a IF , if exists, and Vt (IF ) is the intersection of
time intervals of all instances in a IF , if exists. We denote |S | by the
number of elements of a set S . We define a pattern instance of a
spatiotemporal co-occurrence as follows:

Definition 3.3 (Pattern instance of a spatiotemporal co-occurrence).
Given a spatiotemporal co-occurrence SF , a subset IF of I is called
an instance of SF if

(1) |IF | = |SF |,
(2) IF contains an instance of all feature types in SF ,
(3) Vs (IF ) , ∅,
(4) Vt (IF ) , ∅

Now, we can define a spatiotemporal transaction.

Definition 3.4 (Spatiotemporal Transaction). Given an instance
IFi of a spatiotemporal co-occurrence SFi , let lonдi , lati be longi-
tude and latitude coordinates of the center point of Vs (IFi ) and
ti be the average time in the intersection interval Vt (IF ). We call
< lonдi , lati , ti , IFi > a spatiotemporal transaction of SFi .

Let T be a set of spatiotemporal transactions created from spa-
tiotemporal co-occurrences. Each spatiotemporal transaction Ti is
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represented by a 3D point in the space of the three spatiotempo-
ral dimensions. We call a subset of spatiotemporal transactions a
cluster. Given a cluster clus of spatiotemporal transactions Ti of T ,
we will define a spatiotemporal density function of this subset as
the proportion of two parameters of DBSCAN clustering algorithm
discussed in Section 4. We denote here this function by den(clus).

An itemset is a subset of feature types of set I . Let Ci (Z ) be the
set of transactions in Ci containing itemset Z .

Definition 3.5 (Association rule with respect to a cluster). An as-
sociation rule with respect to cluster Ci , is an implication of the
form

< X ⇒ Y (s, c,d,nS),Ci >

where X ,Y are itemsets and X ∪Y = ∅. Parameters s, c,d,nS repre-
sent support value, confidence value of the rule, the density of the
cluster and the number of transactions in the cluster respectively.
They are computed in the following manner:

(1) s = |Ci (X∪Y ) |
|T |

,

(2) c = |Ci (X∪Y ) |
|Ci (X ) |

(3) d = den(Ci )
(4) nS = |Ci |

The support value of the rule represents the frequency with
which the rule occurs in the cluster and the confidence value of
the rule represents the strength of implication. These notions are
similar to ones in the literature.

In the case where we are not interested in the density value and
the number of transactions in the cluster, we can represent a pattern
in a shortened form: < X ⇒ Y (s, c),Ci > or even < Xi ⇒ Yi ,Ci >.

Givenminsupp,minconf ,minden andminlen user-defined thresh-
olds, we define a spatiotemporal co-occurrence pattern with respect
to a cluster as follows.

Definition 3.6 (Spatiotemporal co-occurrence pattern). An associa-
tion rule with respect to a cluster Ci , < X ⇒ Y (s, c),Ci >, is called
a spatiotemporal co-occurrence pattern if

(1) s ≥ minsupp
(2) c ≥ minconf
(3) d ≥ minden
(4) nS ≥ minlen

Threshold nS is necessary because if a cluster only contains a
few of transactions, we can not consider such a rule as a pattern.

Figure 2 shows an example of spatiotemporal co-occurrence
patterns.

Given a spatiotemporal co-occurrence pattern, pi = {< Xi ⇒
Yi (si , ci ),Ci >}

Definition 3.7. Given two spatiotemporal co-occurrence patterns,
pi = {< Xi ⇒ Yi (si , ci ),Ci >} and pj = {< X j ⇒ Yj (sj , c j ),Cj >},
we say that pi and pj have a overlapping relation if

(1) Xi = X j and Yi = Yj ,
(2) Ci ∩Cj , ∅

3.3 Problem Statement
Given:

Figure 2: An example of co-occurrence patterns

(1) E = {e1, e2, ...eM } be a family of sets of features, where
each feature ei is a set of Mi spatiotemporal feature types,
ei = { fi1, fi2, ... fiMi }, where ei ∪ ej = ∅ for any i, j.

(2) Let I be the set of instances of feature types of all feature
over space and time, I = {i1, i2, ...iN }.

(3) A set of spatiotemporal transactions created from E, I .
(4) A user-defined thresholdminden for density measure of a

cluster, and a thresholdminlen for bounding the number of
transactions in a cluster.

(5) User-defined thresholdsminsupp andminconf for quality
measure of a rule.

Objective: find a set of spatiotemporal co-occurrence patterns
such that

(1) For any spatiotemporal co-occurrence pattern pi =< Xi ⇒
Yi (si , ci ,di ,nSi ),Ci >, we have d(Ci ) ≥ δd , si ≥ minsupp
and ci ≥ minconf

(2) For any two patterns pi ,pj : pi and pj have no overlapping
relation. It means that two clusters containing them have no
spatiotemporal overlapping.

The reason why we give a constraint of non-overlapping relation
between patterns is to avoid the fact that a pattern will be scattered.
This problem will be considered in Section 4.

4 SPATIOTEMPORAL CO-OCCURRENCE
PATTERNS DISCOVERY ALGORITHM

In this section, we introduce a co-occurrence pattern mining algo-
rithm with a given co-occurrence combination. An example of a
size-3 combination is (rainfall, congestion speed, congestion length).

The algorithm is divided into two stages. In stage 1, we build a set
of spatiotemporal transactions from the set of instances of features
of the co-occurrence combination, I = {i1, i2, ...iN }. Spatiotemporal
transactions are created by using spatial and temporal overlap as
in [18] and [14]. We are more interested in the stage 2 in which we
want to mine co-occurrence patterns from a set of spatiotemporal
transactions.

Our idea is to incorporate spatiotemporal clustering with the
frequent itemset (pattern) discovery process to reduce spatiotempo-
ral bias of event distributions and we repeat this process in greedy
approach in order to capture patterns with difference scales. We
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mine frequent itemsets from non-spatiotemporal components of
spatiotemporal transactions in each cluster by Apriori [1]. The al-
gorithm works in a top-down fashion. Starting with the entire set
of spatiotemporal transactions, it does a spatiotemporal clustering.
After mining frequent itemsets in each cluster, it does spatiotempo-
ral clustering on a selected cluster in the next iteration. Ultimately,
when the clusters become small enough (determined by the number
of transactions), this process may stop. There are four problems to
solve in our approach: (1) select a spatiotemporal clustering, (2) the
criterion to select a cluster for the next iteration and (3) determine
new parameters for clustering in the next iteration and finally (4)
how co-occurrence patterns are not overlapped.

4.1 Select a Spatiotemporal Clustering Method
We have chosen DBSCAN algorithm [11], a density based algorithm,
because it has the ability in discovering clusters with arbitrary
shape, it does not require the number of clusters as a input parame-
ter and specially it is scaled for large datasets. It allows to discover
clusters of high density that are separated from one another by
regions of low density. Two input parameters of the clustering are
distance threshold eps and minimum number of neighborsminpts .
In our research, a point refers to a 3D point in a form (lonдi , lati , ti )
extracted from a spatiotemporal transaction, where lonдi , lati are
longitude, latitude of the location where the transaction happens,
and ti is the timestamp when the transaction happens. We use we
use Euclid distance to compute the distance between two points
p,q :

dist(p,q) =
√
(lonдp − lonдq )2 + (latp − latq )2 + (tp − tq )2

As the difference between distribution of geometric coordinates and
time, we need to normalize them before using DBSCAN clustering.
There are many methods for normalization. We use here a simple
way, namelyZ -scores by using the mean and the standard deviation.
We use this in function Normalization() in our algorithm.

4.2 Select a Cluster for Next Iteration
Selecting any cluster for the next iteration of the algorithm can
cause a computational expense because after each iterations, there
are many generated clustered. To address this issue, we use greedy
approach. We should select cluster having the smallest interesting-
ness. Given a clusterCi , assume that we can discover a set of P(Ci )
of co-patterns patterns with respect toCi . We define the interesting-
ness of Ci as

∑
p∈P (Ci ) s(p), where s(p) denotes the support value

of pattern p. We denote this value by I (Ci ). A cluster having the
smallest interestingness contains potentially patterns with smaller
scales because in that cluster, there are many "free" transactions
that do not support any current pattern.

4.3 Update New Parameters for Next
Clustering

First, as mentioned in section Definition, we define a density func-
tion basing on parameters of DBSCAN. Given a cluster clus , we de-
fine den(clus) = MinCorePoints(clus)

eps where MinCorePoints(clus)

is the the minimum number of points within radius eps from a core
point in the cluster.

Now, assume that we do DBSCAN clustering on that cluster by
procedureDBDCAN(clus,new_minpts,new_eps)with new param-
etersnew_minpts andnew_eps of DBSCAN. Thus, ifnew_minpts =
minpts and new_eps = eps then almost no new sub-cluster is gener-
ated because there is no change of density. To create new clusters, it
is better thanwe should havenew_minpts > minpts andnew_eps <
eps . Thus, we can set new_minpts = MinCorePoints(clus) and
new_eps = eps − α , where 0 < α < eps is a parameter deter-
mined by experiment. As a result, we get new_eps < eps . Thus, the
density functions of all new clusters obtained from DBSCAN on
that cluster are always greater than den(clus).

4.4 Non-overlapping Co-occurrence Patterns
As we defined, two co-occurrence patterns are overlapped if they
share the same rule and two clusters containing patterns are over-
lapped. In our algorithm, this may happen if a co-occurrence pat-
tern is mined from a cluster inside the cluster of the remaining
co-occurrence pattern, called the covering cluster. In this case, we
say that the pattern associated with covering cluster is scattered. To
avoid this, for each cluster clus obtained from a DBSCAN clustering,
we store rules associated with all cluster covering the cluster clus .
This permits us to only mine new rules in clus in comparison with
all rules in clusters covering clus and thus patterns can avoid to be
scattered. The details of the algorithm is represented in Algorithm
1.

5 EXPERIMENTS
In this section, we evaluate our method using real-world datasets.
We discover co-occurrence patterns of traffic disaster events co-
occurring with torrential rain events in Kansai area, Japan in 2015.
As we mentioned in the introduction section, we are interested in
spatiotemporal co-occurrence patterns in form

rainf all => conдestion_speed, conдestion_lenдth
Such patterns can represent the influence of the amount of rain-

fall to the congestion speed and the congestion length. We will use
the discovered patterns for prediction. We compared our results to a
baseline in which we mine co-occurrence patterns (global patterns)
on entire data without using clustering. All datasets crawled from
heterogeneous sensors are gathered and stored in a database called
Event Data Warehouse. In this case study, we used two datasets
XRAIN and JARTIC congestion.

Figure 3: Congestion events (red lines) in regions where rain
happened in Kansai area in 13/08/2015
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ALGORITHM 1: Co-occurrence Patterns Discovery Algorithm
Input: The set of spatiotemporal transactions: T , DBSCAN

parameters:minpts and eps , The threshold for the
density of a cluster:minden, Apriori parameters:
minsupp andminconf , The threshold for the number
of iterations: k

Output: A set of co-occurrence patterns in the form of a
bipartite graph where left nodes contain rules and right
nodes contain clusters: G

Normalization(T );
selectedCluster = T ;
mP =minpts ,mE = eps ;
R(c) = ∅ ;
iter = 1;
repeat

mP =minpts(selectedCluster );
mE = eps(selectedCluster ) − α ;
do spatiotemporal clustering
lClusters = DBSCAN(selectedCluster,mP,mE);

for each cluster clus in lClusters do
compute density of cluster clus :
mP = MinCorePoints(clus);

add (clus) with parametersmP,mE to the set of
clusters;

do association rule mining in cluster clus :
lRules = Apriori(clus,minsupp,minconf );

for each rule r (s, c) in lRules do
if r < R(clus) then

add clus, r as well as s, c and density mP
mE to

rules of G ;
end

end
add all rules in lRules to the set R(clus);
select the cluster with minimum density;
selectedCluster = {clus ∈ C |I (clus) is
smallest };

k + +;
end

until IT ER > k ;

• dataset XRAIN: consists of raster data about rainfall amounts
for the rainy season at Japan from May to October in 2015.
Each record of data contains the rainfall raster in one minute.

• dataset congestion JARTIC: consists of 3666509 congestion
events at Kansai area, Japan from May to October in 2015. A
congestion record consists of the following attributes. A start-
ing time, an ending time of the congestion, the congestion
speed, the congestion length, and the road segment where
congestion event happened. A road segment is associated
with two terminal points. Figure 3 presents the geographical
distribution of congestion events in rain regions in Kansai
area in 13/08/2015. Red lines represent road segments where
congestion happened.

We integrate two datasets XRAIN and congestion JARTIC to
build a list of instances. An instance consists of a feature, a feature
type, a start time, a end time and a geometrical region where a
congestion event and a rain event happened. The instances are

like examples in section Definition. To discover correlation of fea-
ture of rainfall amount, congestion speed and congestion length,
we create feature type for each feature as showed in Table 2. For
the rainfall amount, we divided rainfall amounts into 6 intervals:
[10−13mm/h), [13−15mm/h), [15−20mm/h), [20−30mm/h), [30−
50mm/h) and > 50mm/h. We only consider rainfall amounts greater
than or equal to 10mm/h because this value is the threshold of
heavy rains at Japan. In our data, most of rainfall amounts fall into
from 10 to 20mm/h. It is why we divided this interval into three
smaller intervals. For the congestion speed, we created two inter-
vals: < 10km/h and [10 − 20km/h]. The traffic speed higher than
20km/h is not considered a congestion. For congestion length, we
divided into three intervals: < 300m, [300, 600m) and > 600m.

We create all size-3 spatiotemporal co-occurrences of size-3 com-
bination (rainf all , conдestion_speed, conдestion_lenдth). Then we
create pattern instances of the all size-3 spatiotemporal co-occurrences
by using spatiotemporal overlap of instances. A spatiotemporal
transaction represents a co-occurrence of three instances of a rain
event and a congestion event. As the way to create a transaction, the
spatial coordinates of a transaction is some point on road segment
where congestion happened. All datasets and programs are stored
and implemented on our PostgreSQL server 9.3, an object-relational
database. The server is integrated Madlib, a machine learning li-
brary for running big data. We executed Apriori algorithm directly
on Madlib and executed DBSCAN algorithm using PL/Python inte-
grated on PostgreSQL. We obtained 198276 spatiotemporal transac-
tions.

Table 2: Description on attributes of the two datasets.

Attribute Categorical Values Shortened Form
Rainfall [10 − 13mm/h) r f 1

[13 − 15mm/h) r f 2
[15 − 20mm/h) r f 3
[20 − 30mm/h) r f 4
[30 − 50mm/h) r f 5
> 50mm/h r f 6

Congestion speed < 10km/h ct1
[10-20km/h) ct2

Congestion length [0 − 300m) cl1
[300 − 600m) cl2
> 600m cl3

5.1 Evaluation of Co-occurrence Patterns
We implemented our co-occurrence patterns discovery algorithm
presented in Algorithm 1 for discovering patterns from the set of
spatiotemporal transactions created in module Data Integration.

To select parameters for DBSCAN clustering, we compute the
k-nearest neighbor distances in a matrix of all points. The plot in
Figure 4 can be used to help find a suitable value for the eps neigh-
borhood for DBSCAN. Withminpts = 10, we selected eps = 0.35.
Thus, we obtain 7 clusters after an iteration. This selection allows
us to avoid to create too many clusters that cause the scatter of
patterns. For parameters of Apriori algorithm, we setminsupp to
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0.1 andminconf to 0.3. Number of iteration is set to 30. In our ex-
periment, α is set to 0.02 and the minimum number of transactions
in a cluster is 20.

Figure 4: 10-nearest neighbors distances according to the
number of points sort by distance

Our method returned 45 co-occurrence patterns. To evaluate our
results, we compare our results with one baseline that we mine
co-occurrence patterns directly on the set of spatiotemporal trans-
actions without doing clustering. As a result, the baseline method
created 2 co-occurrent patterns. To represent a spatiotemporal clus-
ter, we use a 3D cube that is the minimum cube bounding trans-
actions in the cluster. Figure 5B shows 2 co-occurrence patterns
annotated with the same cluster bounding the entire all transac-
tions. A pattern containing the rule r f 1 => ct1, cl2 and a pattern
containing the rule r f 2 => ct1, cl2. In Figure 5C , we present 13 co-
occurrence patterns containing different rules and that are different
with two rules created from the baseline method. Each pattern is
contained a cluster with a color. The details of these patterns are
represented in Table 3 that each line refers to a pattern. Each line
contains the information about support, confidence, density and
the number of transactions in the cluster containing the pattern.
Most of these patterns refer to correct events at big roads at cities
Sakai, Minami-ku, Naka-ku, Hineji, Takatsuki in Kansai in 2015.

Table 3: Co-occurrenct Patterns.

rule support confidence density nTransactions
r f 1 => ct1, cl1 0.14 0.31 29.8 112
r f 1 => ct1, cl3 0.34 0.76 66.7 109
r f 1 => ct2, cl2 0.16 0.31 25.1 36
r f 2 => ct1, cl1 0.14 0.85 11.9 155
r f 2 => ct1, cl3 0.14 0.46 124.2 365
r f 3 => ct1, cl1 0.11 0.45 23.4 168
r f 3 => ct1, cl2 0.10 0.8 56.3 331
r f 3 => ct1, cl3 0.12 0.53 67.8 365
r f 4 => ct1, cl1 0.24 0.53 11.5 143
r f 4 => ct1, cl2 0.2 0.46 35.6 143
r f 4 => ct1, cl3 0.15 0.55 90.9 694
r f 5 => ct1, cl3 0.14 0.75 102.3 170
r f 6 => ct1, cl1 0.10 0.5 13.6 28

5.2 Patterns Evaluation by F-Measure
In this section, we use co-occurrence patterns discovered by the
proposed method to evaluate F-measure in comparison with a base-
line. We use 5-folds cross validation for prediction process. The
set of all 198276 transactions is divided into 5 datasets with the
similar size. In each test, a dataset is used for test process and 4
datasets are used for learning process. Given a spatiotemporal trans-
action in a test dataset < lonдi , lati , ti , { f1, f2, f3} >, if there is a
co-occurrence pattern < X ⇒ Y ,Ci > such that (1) spatial compo-
nent < lonдi , lati > is equal to a spatial component of a point in
the cluster Ci and (2) ti is within time interval of cluster Ci and
(3) f1 = X and { f2, f3} = Y then we say that the spatiotemporal
transaction is a true positive case. Let TP be set of true positive
cases, let S be the test dataset and let P be set of co-occurrence
patterns discovered in 4 datasets for learning process. Thus, we get
Precision = |T P |

|P | , Recall =
|T P |
|S | , F-measure = 2× Precision×Recall

Precision+Recall .
The final values of F-measure are average values of 5 tests.

We compared prediction results obtained by the proposedmethod
with prediction results from the baseline method. In our experiment,
number of iterations is set to 30, α is set to 0.02 and the minimum
number of transactions in a cluster is set to 20. For parameters of
Apriori algorithm,we setminsupp to 0.1 andminconf to 0.3.We also
consider false negative rates and F-measure in 5 different cases of
parametersminpts and eps : case 1 where eps = 0.2 andminpts = 10,
case 2 where eps = 0.3 andminpts = 10, case 3 where eps = 0.35
and minpts = 10, case 4 where eps = 0.3 and minpts = 30 and
case 5 where eps = 0.3 andminpts = 50. For all cases, we use the
same parameters for number of iteration, α , the minimum number
of transactions in a cluster,minsupp,minconf . Figure 6 shows the
comparison of F-measure of 5 cases with the baseline over the num-
ber of iterations from 1 to 30. Our 5 cases provided F-measure much
higher than F-measure obtained by the baseline. After 30 iterations,
the case where eps = 0.35 andminpts = 10 get F-measure = 0.74 in
comparison with F-measure =0.41 obtained by the baseline.

6 CONCLUSION
In this paper, we addressed the discovery of the spatiotemporal
co-occurrence patterns annotated with valid spatial and temporal
regions. We proposed a method to solve this problem by incorporat-
ing spatiotemporal clustering with the frequent itemset discovery
process. Spatiotemporal clusters created from clustering potentially
contain co-occurrence patterns due to the spatial and temporal
dependence of events. We applied our method to discovery and
prediction of traffic disaster events co-occurring with torrential
rain events in Kansai area, Japan. Our experimental result shows
31% improvement of prediction performance on F-measure against
a baseline. In the future, we will integrate additionally SNS data
like tweets talking about disaster events and will improve our algo-
rithms to enhance F-measure.
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